3.385 \(\int \frac{\sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx\)

Optimal. Leaf size=49 \[ \frac{c \cos (e+f x) \log (\sin (e+f x)+1)}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

[Out]

(c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.100471, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {2737, 2667, 31} \[ \frac{c \cos (e+f x) \log (\sin (e+f x)+1)}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c*Sin[e + f*x]]/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx &=\frac{(a c \cos (e+f x)) \int \frac{\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(c \cos (e+f x)) \operatorname{Subst}\left (\int \frac{1}{a+x} \, dx,x,a \sin (e+f x)\right )}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{c \cos (e+f x) \log (1+\sin (e+f x))}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.976221, size = 118, normalized size = 2.41 \[ -\frac{\sqrt{2} \left (e^{i (e+f x)}+i\right ) \left (f x+2 i \log \left (e^{i (e+f x)}+i\right )\right ) \sqrt{c-c \sin (e+f x)}}{f \left (e^{i (e+f x)}-i\right ) \sqrt{-i a e^{-i (e+f x)} \left (e^{i (e+f x)}+i\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - c*Sin[e + f*x]]/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((Sqrt[2]*(I + E^(I*(e + f*x)))*(f*x + (2*I)*Log[I + E^(I*(e + f*x))])*Sqrt[c - c*Sin[e + f*x]])/((-I + E^(I*
(e + f*x)))*Sqrt[((-I)*a*(I + E^(I*(e + f*x)))^2)/E^(I*(e + f*x))]*f))

________________________________________________________________________________________

Maple [B]  time = 0.127, size = 106, normalized size = 2.2 \begin{align*} -{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{f \left ( -1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) } \left ( \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \right ){\frac{1}{\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-1/f*(1-cos(f*x+e)+sin(f*x+e))*(-c*(-1+sin(f*x+e)))^(1/2)*(ln(2/(cos(f*x+e)+1))-2*ln(-(-1+cos(f*x+e)-sin(f*x+e
))/sin(f*x+e)))/(a*(1+sin(f*x+e)))^(1/2)/(-1+cos(f*x+e)+sin(f*x+e))

________________________________________________________________________________________

Maxima [A]  time = 1.81834, size = 86, normalized size = 1.76 \begin{align*} -\frac{\frac{2 \, \sqrt{c} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{\sqrt{a}} - \frac{\sqrt{c} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{a}}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-(2*sqrt(c)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/sqrt(a) - sqrt(c)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^2
 + 1)/sqrt(a))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c \sin \left (f x + e\right ) + c}}{\sqrt{a \sin \left (f x + e\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (\sin{\left (e + f x \right )} - 1\right )}}{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c \sin \left (f x + e\right ) + c}}{\sqrt{a \sin \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)